稳定版参数

This commit is contained in:
林若思 2026-01-12 16:15:49 +08:00
parent 8f7b02f18b
commit eda73af083
3 changed files with 125 additions and 157 deletions

View File

@ -1,7 +1,6 @@
package com.zs.smarthuman.sherpa package com.zs.smarthuman.sherpa
import android.content.res.AssetManager import android.content.res.AssetManager
import android.text.TextUtils
import com.blankj.utilcode.util.LogUtils import com.blankj.utilcode.util.LogUtils
import com.k2fsa.sherpa.onnx.OnlineStream import com.k2fsa.sherpa.onnx.OnlineStream
import com.k2fsa.sherpa.onnx.SpeakerRecognition import com.k2fsa.sherpa.onnx.SpeakerRecognition
@ -16,7 +15,7 @@ class VoiceController(
assetManager: AssetManager, assetManager: AssetManager,
private val onWakeup: () -> Unit, private val onWakeup: () -> Unit,
private val onFinalAudio: (FloatArray) -> Unit, private val onFinalAudio: (FloatArray) -> Unit,
idleTimeoutSeconds: Int = 10, idleTimeoutSeconds: Int = 200,
maxRecordingSeconds: Int = 10, maxRecordingSeconds: Int = 10,
private val onStateChanged: ((VoiceState) -> Unit)? = null, private val onStateChanged: ((VoiceState) -> Unit)? = null,
private val stopBackendAudio: (() -> Unit)? = null, private val stopBackendAudio: (() -> Unit)? = null,
@ -30,15 +29,21 @@ class VoiceController(
private const val SAMPLE_RATE = 16000 private const val SAMPLE_RATE = 16000
// 预缓存大小2秒 // 预缓存大小2秒
private const val PRE_BUFFER_SIZE = SAMPLE_RATE * 2 private const val PRE_BUFFER_SIZE = SAMPLE_RATE * 2
// 声纹验证阈值
private const val SPEAKER_VERIFY_THRESHOLD_NORMAL = 0.25f // ========== 核心:分场景声纹阈值(极简版) ==========
private const val SPEAKER_VERIFY_THRESHOLD_SHORT = 0.20f private const val SPEAKER_THRESHOLD_QUIET = 0.50f // 安静环境
private const val SHORT_AUDIO_THRESHOLD = SAMPLE_RATE * 0.5f // 0.5秒音频长度 private const val SPEAKER_THRESHOLD_NOISY = 0.43f // 嘈杂环境(匹配你的真实相似度)
// 防抖时间 private const val SPEAKER_THRESHOLD_SHORT = 0.40f // 短语音(<1秒
// 短语音判定阈值
private const val SHORT_AUDIO_DURATION_MS = 1000L
private const val INVALID_RESET_DEBOUNCE_MS = 1500L private const val INVALID_RESET_DEBOUNCE_MS = 1500L
// 最小语音时长 // 最小语音时长
private const val MIN_SPEECH_MS = 800L private const val MIN_SPEECH_MS = 800L
private const val MIN_EFFECTIVE_VOICE_DURATION = 400L private const val MIN_EFFECTIVE_VOICE_DURATION = 400L
// 噪音场景判定阈值
private const val NOISE_BASELINE_THRESHOLD = 0.01f
} }
var state: VoiceState = VoiceState.WAIT_WAKEUP var state: VoiceState = VoiceState.WAIT_WAKEUP
@ -48,23 +53,21 @@ class VoiceController(
onStateChanged?.invoke(value) onStateChanged?.invoke(value)
} }
// ========== 缺失变量补充:实时能量与帧统计变量 ========== // 实时能量与帧统计变量
// 实时能量统计
private var realtimeEnergySum = 0f private var realtimeEnergySum = 0f
private var realtimeEnergyCount = 0 private var realtimeEnergyCount = 0
private var realtimePeakRms = 0f private var realtimePeakRms = 0f
// 实时帧统计
private var realtimeTotalFrames = 0 private var realtimeTotalFrames = 0
private var realtimeSpeechFrames = 0 private var realtimeSpeechFrames = 0
private var realtimeContinuousSpeechFrames = 0 private var realtimeContinuousSpeechFrames = 0
private var realtimeLastFrameIsSpeech = false private var realtimeLastFrameIsSpeech = false
// 多人对话检测标记
private var isMultiPersonDialogueDetected = false private var isMultiPersonDialogueDetected = false
// 防抖重置标记
private var lastInvalidResetMs = 0L private var lastInvalidResetMs = 0L
// 声纹管理器锁(解决并发问题)
private val speakerManagerLock = ReentrantLock() private val speakerManagerLock = ReentrantLock()
// 环境噪音状态标记
private var isNoisyEnvironment = false
private val wakeupManager = WakeupManager(assetManager, onWakeup) private val wakeupManager = WakeupManager(assetManager, onWakeup)
private val vadManager = VadManager( private val vadManager = VadManager(
assetManager, assetManager,
@ -89,16 +92,16 @@ class VoiceController(
private val idleTimeoutMs = idleTimeoutSeconds * 1000L private val idleTimeoutMs = idleTimeoutSeconds * 1000L
private val maxRecordingMs = maxRecordingSeconds * 1000L private val maxRecordingMs = maxRecordingSeconds * 1000L
// ================= 保留分场景动态系数 + 强制兜底配置(近距离优化版) ================= // 分场景动态系数(保留原有逻辑)
private val BASELINE_WINDOW_SIZE = 50 private val BASELINE_WINDOW_SIZE = 50
private val envNoiseBuffer = ArrayDeque<Float>(BASELINE_WINDOW_SIZE) private val envNoiseBuffer = ArrayDeque<Float>(BASELINE_WINDOW_SIZE)
private var currentEnvBaseline = 0.001f private var currentEnvBaseline = 0.001f
// 强制兜底:正常语音最低门槛(近距离场景大幅降低) // 强制兜底:正常语音最低门槛
private val MIN_NORMAL_VOICE_ENERGY = 0.03f private val MIN_NORMAL_VOICE_ENERGY = 0.03f
private val MIN_NORMAL_VOICE_VAD_RATIO = 0.2f private val MIN_NORMAL_VOICE_VAD_RATIO = 0.2f
// 分场景动态系数(安静环境系数极低,适配近距离轻声) // 分场景动态系数
private val BASELINE_QUIET_THRESHOLD = 0.005f private val BASELINE_QUIET_THRESHOLD = 0.005f
private val SHORT_SPEECH_ENERGY_COEFF_QUIET = 1.5f private val SHORT_SPEECH_ENERGY_COEFF_QUIET = 1.5f
private val SHORT_SPEECH_ENERGY_COEFF_NOISY = 2.0f private val SHORT_SPEECH_ENERGY_COEFF_NOISY = 2.0f
@ -109,7 +112,7 @@ class VoiceController(
private val SHORT_SPEECH_MIN_SCORE = 1 private val SHORT_SPEECH_MIN_SCORE = 1
private val LONG_SPEECH_MIN_SCORE = 1 private val LONG_SPEECH_MIN_SCORE = 1
// 其他过滤参数(近距离场景放宽) // 其他过滤参数
private val MAX_FAR_FIELD_ENERGY = 0.015f private val MAX_FAR_FIELD_ENERGY = 0.015f
private val MIN_VALID_PEAK_AVG_RATIO = 0.5f private val MIN_VALID_PEAK_AVG_RATIO = 0.5f
private val MIN_CONTINUOUS_FRAME_RATIO = 0.1f private val MIN_CONTINUOUS_FRAME_RATIO = 0.1f
@ -118,40 +121,32 @@ class VoiceController(
private val SHORT_SPEECH_MIN = 500L private val SHORT_SPEECH_MIN = 500L
private val SHORT_SPEECH_MAX = 2000L private val SHORT_SPEECH_MAX = 2000L
// ========== 核心修改:多人对话过滤配置 ========== // 多人对话过滤配置
private val MULTI_DIALOGUE_MIN_DURATION = 2500L private val MULTI_DIALOGUE_MIN_DURATION = 2500L
private val MULTI_DIALOGUE_MAX_PEAK_AVG_RATIO = 2.5f private val MULTI_DIALOGUE_MAX_PEAK_AVG_RATIO = 2.5f
private val MULTI_DIALOGUE_MIN_PEAK_AVG_RATIO = 0.4f private val MULTI_DIALOGUE_MIN_PEAK_AVG_RATIO = 0.4f
private val MULTI_DIALOGUE_MAX_CONTINUOUS_RATIO = 0.3f private val MULTI_DIALOGUE_MAX_CONTINUOUS_RATIO = 0.3f
private val MULTI_DIALOGUE_MIN_VAD_RATIO = 0.55f private val MULTI_DIALOGUE_MIN_VAD_RATIO = 0.55f
// ========== 核心调整:近距离场景 微弱人声过滤配置(重点优化) ========== // 微弱人声过滤配置
private val MIN_VOICE_FRAME_RATIO = 0.08f private val MIN_VOICE_FRAME_RATIO = 0.08f
private val MIN_PEAK_ENERGY_RATIO = 1.5f private val MIN_PEAK_ENERGY_RATIO = 1.5f
private val NORMAL_VOICE_ENERGY_THRESHOLD = 0.008f private val NORMAL_VOICE_ENERGY_THRESHOLD = 0.008f
private val MIN_CONTINUOUS_VOICE_FRAMES = 1 private val MIN_CONTINUOUS_VOICE_FRAMES = 1
// ========== 核心新增MIN_EFFECTIVE_SPEECH_RMS 常量 ==========
private val MIN_EFFECTIVE_SPEECH_RMS = 0.0005f private val MIN_EFFECTIVE_SPEECH_RMS = 0.0005f
// ========== 核心新增:无效说话标记 + 超时类型 ========== // 无效说话标记 + 超时类型
private var hasInvalidSpeech = false private var hasInvalidSpeech = false
private var currentTimeoutType: TimeoutType = TimeoutType.IDLE_TIMEOUT private var currentTimeoutType: TimeoutType = TimeoutType.IDLE_TIMEOUT
// ========== 核心配置:声纹验证相关 ========== // 声纹验证相关
private val CURRENT_USER_ID = "current_wakeup_user" // 当前唤醒用户唯一标识 private val CURRENT_USER_ID = "current_wakeup_user"
private val ENABLE_STRICT_SPEAKER_VERIFY = true // 严格验证开关 private val ENABLE_STRICT_SPEAKER_VERIFY = true
init { init {
// 参数校验
require(idleTimeoutSeconds > 0) { "idleTimeoutSeconds 必须大于0" }
require(maxRecordingSeconds > 0) { "maxRecordingSeconds 必须大于0" }
require(maxRecordingSeconds >= idleTimeoutSeconds) { "maxRecordingSeconds 必须大于等于 idleTimeoutSeconds" }
// 初始化声纹识别器适配你提供的API
try { try {
SpeakerRecognition.initExtractor(assetManager) // 对齐原生API SpeakerRecognition.initExtractor(assetManager)
LogUtils.d(TAG, "✅ 声纹识别器初始化成功原生Stream版本") LogUtils.d(TAG, "✅ 声纹识别器初始化成功")
} catch (e: Exception) { } catch (e: Exception) {
LogUtils.e(TAG, "❌ 声纹识别器初始化失败", e) LogUtils.e(TAG, "❌ 声纹识别器初始化失败", e)
throw RuntimeException("声纹识别初始化失败", e) throw RuntimeException("声纹识别初始化失败", e)
@ -163,8 +158,8 @@ class VoiceController(
cachePreBuffer(samples) cachePreBuffer(samples)
wakeupManager.acceptAudio(samples) wakeupManager.acceptAudio(samples)
if (wakeupManager.consumeWakeupFlag()) { if (wakeupManager.consumeWakeupFlag()) {
handleWakeupEvent() // 仅调用一次 handleWakeupEvent()
// 注册唤醒用户特征(异步执行) // 注册唤醒用户特征
CoroutineScope(Dispatchers.IO).launch { CoroutineScope(Dispatchers.IO).launch {
var stream: OnlineStream? = null var stream: OnlineStream? = null
runCatching { runCatching {
@ -174,18 +169,14 @@ class VoiceController(
return@launch return@launch
} }
// 创建原生Stream
stream = SpeakerRecognition.extractor.createStream() stream = SpeakerRecognition.extractor.createStream()
stream.acceptWaveform(samples = wakeupAudio, sampleRate = SAMPLE_RATE) stream?.acceptWaveform(samples = wakeupAudio, sampleRate = SAMPLE_RATE)
stream.inputFinished() stream?.inputFinished()
// 计算特征并注册(仅当前用户) if (stream != null && SpeakerRecognition.extractor.isReady(stream)) {
if (SpeakerRecognition.extractor.isReady(stream)) {
val embedding = SpeakerRecognition.extractor.compute(stream) val embedding = SpeakerRecognition.extractor.compute(stream)
// 加锁保护 manager 操作
speakerManagerLock.withLock { speakerManagerLock.withLock {
SpeakerRecognition.manager.remove(CURRENT_USER_ID) SpeakerRecognition.manager.remove(CURRENT_USER_ID)
// 注册当前唤醒用户
val embeddingList = mutableListOf(embedding) val embeddingList = mutableListOf(embedding)
val ok = SpeakerRecognition.manager.add( val ok = SpeakerRecognition.manager.add(
name = CURRENT_USER_ID, name = CURRENT_USER_ID,
@ -194,7 +185,7 @@ class VoiceController(
if (ok) { if (ok) {
LogUtils.d(TAG, "✅ 注册当前唤醒用户特征成功 | 特征长度: ${embedding.size}") LogUtils.d(TAG, "✅ 注册当前唤醒用户特征成功 | 特征长度: ${embedding.size}")
} else { } else {
LogUtils.w(TAG, "❌ 注册当前唤醒用户特征失败manager.add返回false") LogUtils.w(TAG, "❌ 注册当前唤醒用户特征失败")
} }
} }
} else { } else {
@ -203,9 +194,7 @@ class VoiceController(
}.onFailure { }.onFailure {
LogUtils.e(TAG, "❌ 唤醒用户特征注册失败", it) LogUtils.e(TAG, "❌ 唤醒用户特征注册失败", it)
}.also { }.also {
// 释放Stream
stream?.release() stream?.release()
LogUtils.d(TAG, "🔄 唤醒注册Stream已释放")
} }
} }
return return
@ -215,6 +204,8 @@ class VoiceController(
if (state == VoiceState.WAIT_WAKEUP) { if (state == VoiceState.WAIT_WAKEUP) {
calibrateEnvBaseline(samples) calibrateEnvBaseline(samples)
isNoisyEnvironment = currentEnvBaseline >= NOISE_BASELINE_THRESHOLD
LogUtils.d(TAG, "📊 环境状态 | 基线: $currentEnvBaseline | 嘈杂环境: $isNoisyEnvironment")
} }
when (state) { when (state) {
@ -257,10 +248,11 @@ class VoiceController(
audioBuffer.addAll(samples.asList()) audioBuffer.addAll(samples.asList())
vadManager.accept(samples) vadManager.accept(samples)
// ========== 核心优化:录音过程中实时计算 ==========
calibrateEnvBaseline(samples) calibrateEnvBaseline(samples)
updateRealtimeEnergy(samples) updateRealtimeEnergy(samples)
updateRealtimeFrameStats() updateRealtimeFrameStats()
isNoisyEnvironment = currentEnvBaseline >= NOISE_BASELINE_THRESHOLD
if (checkMultiPersonDialogueRealtime(now)) { if (checkMultiPersonDialogueRealtime(now)) {
LogUtils.w(TAG, "🚨 录音中识别出多人对话,提前终止") LogUtils.w(TAG, "🚨 录音中识别出多人对话,提前终止")
finishSentence(realtimeEnergySum / realtimeEnergyCount, realtimePeakRms) finishSentence(realtimeEnergySum / realtimeEnergyCount, realtimePeakRms)
@ -268,25 +260,25 @@ class VoiceController(
} }
if (System.currentTimeMillis() - recordingStartMs > maxRecordingMs) { if (System.currentTimeMillis() - recordingStartMs > maxRecordingMs) {
LogUtils.w(TAG, "⏱ Max recording reached | 当前环境基线: $currentEnvBaseline") LogUtils.w(TAG, "⏱ Max recording reached | 当前环境基线: $currentEnvBaseline | 嘈杂环境: $isNoisyEnvironment")
finishSentence(realtimeEnergySum / realtimeEnergyCount, realtimePeakRms) finishSentence(realtimeEnergySum / realtimeEnergyCount, realtimePeakRms)
} }
} }
} }
} }
/* ================= 新增:录音中实时更新能量统计(适配近距离轻声) ================= */ /* ================= 实时能量更新 ================= */
private fun updateRealtimeEnergy(samples: FloatArray) { private fun updateRealtimeEnergy(samples: FloatArray) {
val rms = vadManager.calcRms(samples) val rms = vadManager.calcRms(samples)
// 仅统计有效语音帧的能量(阈值降低) val effectiveThreshold = if (isNoisyEnvironment) currentEnvBaseline * 1.8f else MIN_EFFECTIVE_SPEECH_RMS
if (rms >= MIN_EFFECTIVE_SPEECH_RMS) { if (rms >= effectiveThreshold) {
realtimeEnergySum += rms realtimeEnergySum += rms
realtimeEnergyCount++ realtimeEnergyCount++
realtimePeakRms = maxOf(realtimePeakRms, rms) realtimePeakRms = maxOf(realtimePeakRms, rms)
} }
} }
/* ================= 新增:录音中实时更新帧统计 ================= */ /* ================= 实时帧统计 ================= */
private fun updateRealtimeFrameStats() { private fun updateRealtimeFrameStats() {
realtimeTotalFrames = vadManager.getTotalFrames() realtimeTotalFrames = vadManager.getTotalFrames()
realtimeSpeechFrames = vadManager.getSpeechFrames() realtimeSpeechFrames = vadManager.getSpeechFrames()
@ -300,7 +292,7 @@ class VoiceController(
realtimeLastFrameIsSpeech = currentFrameIsSpeech realtimeLastFrameIsSpeech = currentFrameIsSpeech
} }
/* ================= 新增:录音中实时判定多人对话 ================= */ /* ================= 多人对话检测 ================= */
private fun checkMultiPersonDialogueRealtime(now: Long): Boolean { private fun checkMultiPersonDialogueRealtime(now: Long): Boolean {
val duration = now - recordingStartMs val duration = now - recordingStartMs
if (duration < MULTI_DIALOGUE_MIN_DURATION) return false if (duration < MULTI_DIALOGUE_MIN_DURATION) return false
@ -318,10 +310,9 @@ class VoiceController(
return isMultiPersonDialogueDetected return isMultiPersonDialogueDetected
} }
/* ================= 环境基线校准(适配近距离场景,降低噪音敏感度) ================= */ /* ================= 环境基线校准 ================= */
private fun calibrateEnvBaseline(samples: FloatArray) { private fun calibrateEnvBaseline(samples: FloatArray) {
val rms = vadManager.calcRms(samples) val rms = vadManager.calcRms(samples)
// 只保留低于基线+阈值的有效值,过滤突发噪音(阈值降低)
val validRms = if (rms < currentEnvBaseline + 0.002f) rms else currentEnvBaseline val validRms = if (rms < currentEnvBaseline + 0.002f) rms else currentEnvBaseline
if (rms < 0.015f) { if (rms < 0.015f) {
if (envNoiseBuffer.size >= BASELINE_WINDOW_SIZE) { if (envNoiseBuffer.size >= BASELINE_WINDOW_SIZE) {
@ -332,7 +323,7 @@ class VoiceController(
} }
} }
/* ================= 唤醒相关方法 ================= */ /* ================= 唤醒处理 ================= */
private fun handleWakeupEvent() { private fun handleWakeupEvent() {
if (state == VoiceState.UPLOADING) return if (state == VoiceState.UPLOADING) return
stopBackendAudio?.invoke() stopBackendAudio?.invoke()
@ -361,7 +352,7 @@ class VoiceController(
private fun onVadStart() { private fun onVadStart() {
if (state != VoiceState.WAIT_SPEECH) return if (state != VoiceState.WAIT_SPEECH) return
LogUtils.d(TAG, "🎤 REAL VAD START | 环境基线: $currentEnvBaseline") LogUtils.d(TAG, "🎤 REAL VAD START | 环境基线: $currentEnvBaseline | 嘈杂环境: $isNoisyEnvironment")
vadStarted = true vadStarted = true
recordingStartMs = System.currentTimeMillis() recordingStartMs = System.currentTimeMillis()
audioBuffer.clear() audioBuffer.clear()
@ -372,64 +363,57 @@ class VoiceController(
private fun onVadEnd(avgEnergy: Float, peakRms: Float) { private fun onVadEnd(avgEnergy: Float, peakRms: Float) {
if (state != VoiceState.RECORDING) return if (state != VoiceState.RECORDING) return
LogUtils.d(TAG, "🧠 VAD END | 环境基线: $currentEnvBaseline") LogUtils.d(TAG, "🧠 VAD END | 环境基线: $currentEnvBaseline | 嘈杂环境: $isNoisyEnvironment")
val realAvgEnergy = if (realtimeEnergyCount > 0) realtimeEnergySum / realtimeEnergyCount else avgEnergy val realAvgEnergy = if (realtimeEnergyCount > 0) realtimeEnergySum / realtimeEnergyCount else avgEnergy
val realPeakRms = if (realtimePeakRms > 0) realtimePeakRms else peakRms val realPeakRms = if (realtimePeakRms > 0) realtimePeakRms else peakRms
finishSentence(realAvgEnergy, realPeakRms) finishSentence(realAvgEnergy, realPeakRms)
} }
/* ================= 核心优化:近距离场景 微弱人声过滤方法 ================= */ /* ================= 微弱人声过滤 ================= */
private fun filterWeakVoice(duration: Long, avgEnergy: Float, peakRms: Float): Boolean { private fun filterWeakVoice(duration: Long, avgEnergy: Float, peakRms: Float): Boolean {
// 1. 时长过滤:<400ms的极短杂音才过滤
if (duration < MIN_EFFECTIVE_VOICE_DURATION) { if (duration < MIN_EFFECTIVE_VOICE_DURATION) {
LogUtils.w(TAG, "❌ 微弱人声过滤:时长${duration}ms < ${MIN_EFFECTIVE_VOICE_DURATION}ms") LogUtils.w(TAG, "❌ 微弱人声过滤:时长${duration}ms < ${MIN_EFFECTIVE_VOICE_DURATION}ms")
return true return true
} }
// 2. 帧占比过滤:仅对极低能量语音生效
val voiceFrameRatio = if (realtimeTotalFrames > 0) realtimeSpeechFrames.toFloat() / realtimeTotalFrames else 0f val voiceFrameRatio = if (realtimeTotalFrames > 0) realtimeSpeechFrames.toFloat() / realtimeTotalFrames else 0f
if (avgEnergy < NORMAL_VOICE_ENERGY_THRESHOLD && voiceFrameRatio < MIN_VOICE_FRAME_RATIO) { if (avgEnergy < NORMAL_VOICE_ENERGY_THRESHOLD && voiceFrameRatio < MIN_VOICE_FRAME_RATIO) {
LogUtils.w(TAG, "❌ 微弱人声过滤:帧占比${voiceFrameRatio} < ${MIN_VOICE_FRAME_RATIO}(极低能量)") LogUtils.w(TAG, "❌ 微弱人声过滤:帧占比${voiceFrameRatio} < ${MIN_VOICE_FRAME_RATIO}")
return true return true
} }
// 3. 峰值能量过滤:仅对极低能量语音生效,且阈值大幅降低
val peakBaselineRatio = peakRms / currentEnvBaseline val peakBaselineRatio = peakRms / currentEnvBaseline
if (avgEnergy < NORMAL_VOICE_ENERGY_THRESHOLD && peakBaselineRatio < MIN_PEAK_ENERGY_RATIO) { if (avgEnergy < NORMAL_VOICE_ENERGY_THRESHOLD && peakBaselineRatio < MIN_PEAK_ENERGY_RATIO) {
LogUtils.w(TAG, "❌ 微弱人声过滤:峰值/基线${peakBaselineRatio} < ${MIN_PEAK_ENERGY_RATIO}(极低能量)") LogUtils.w(TAG, "❌ 微弱人声过滤:峰值/基线${peakBaselineRatio} < ${MIN_PEAK_ENERGY_RATIO}")
return true return true
} }
// 4. 连续帧过滤仅对极低能量语音生效且阈值降到1
if (avgEnergy < NORMAL_VOICE_ENERGY_THRESHOLD && realtimeContinuousSpeechFrames < MIN_CONTINUOUS_VOICE_FRAMES) { if (avgEnergy < NORMAL_VOICE_ENERGY_THRESHOLD && realtimeContinuousSpeechFrames < MIN_CONTINUOUS_VOICE_FRAMES) {
LogUtils.w(TAG, "❌ 微弱人声过滤:连续帧${realtimeContinuousSpeechFrames} < ${MIN_CONTINUOUS_VOICE_FRAMES}(极低能量)") LogUtils.w(TAG, "❌ 微弱人声过滤:连续帧${realtimeContinuousSpeechFrames} < ${MIN_CONTINUOUS_VOICE_FRAMES}")
return true return true
} }
// 5. 平均能量过滤:仅对极极低能量语音生效
val energyBaselineRatio = avgEnergy / currentEnvBaseline val energyBaselineRatio = avgEnergy / currentEnvBaseline
if (avgEnergy < 0.005f && energyBaselineRatio < 1.2f) { if (avgEnergy < 0.005f && energyBaselineRatio < 1.2f) {
LogUtils.w(TAG, "❌ 微弱人声过滤:能量/基线${energyBaselineRatio} < 1.2(极极低能量)") LogUtils.w(TAG, "❌ 微弱人声过滤:能量/基线${energyBaselineRatio} < 1.2")
return true return true
} }
// 正常语音(包括近距离轻声)直接通过
return false return false
} }
/* ================= 结束录音(核心:适配近距离轻声) ================= */ /* ================= 结束录音 ================= */
private fun finishSentence(avgEnergy: Float = 0f, peakRms: Float = 0f) { private fun finishSentence(avgEnergy: Float = 0f, peakRms: Float = 0f) {
val now = System.currentTimeMillis() val now = System.currentTimeMillis()
val duration = now - recordingStartMs val duration = now - recordingStartMs
if (!vadStarted || duration < MIN_SPEECH_MS) { if (!vadStarted || duration < MIN_SPEECH_MS) {
LogUtils.d(TAG, "❌ 语音过短: $duration ms | 基线: $currentEnvBaseline") LogUtils.d(TAG, "❌ 语音过短: $duration ms | 基线: $currentEnvBaseline | 嘈杂环境: $isNoisyEnvironment")
hasInvalidSpeech = true hasInvalidSpeech = true
resetToWaitSpeech() resetToWaitSpeech()
return return
} }
// ========== 第二步:微弱人声专项过滤(仅过滤极微弱杂音) ==========
if (filterWeakVoice(duration, avgEnergy, peakRms)) { if (filterWeakVoice(duration, avgEnergy, peakRms)) {
hasInvalidSpeech = true hasInvalidSpeech = true
resetToWaitSpeech() resetToWaitSpeech()
@ -440,42 +424,30 @@ class VoiceController(
val vadRatio = vadManager.activeSpeechRatio() val vadRatio = vadManager.activeSpeechRatio()
val peakAvgRatio = if (avgEnergy > 0f) peakRms / avgEnergy else 0f val peakAvgRatio = if (avgEnergy > 0f) peakRms / avgEnergy else 0f
LogUtils.d(TAG, "📊 录音信息 | 时长: $duration ms | 能量: $avgEnergy | 峰均比: $peakAvgRatio | 基线: $currentEnvBaseline") LogUtils.d(TAG, "📊 录音信息 | 时长: $duration ms | 能量: $avgEnergy | 峰均比: $peakAvgRatio | 基线: $currentEnvBaseline | 嘈杂环境: $isNoisyEnvironment")
LogUtils.d(TAG, "📊 实时帧统计 | 总帧: $realtimeTotalFrames | 语音帧: $realtimeSpeechFrames | 连续语音帧: $realtimeContinuousSpeechFrames") LogUtils.d(TAG, "📊 实时帧统计 | 总帧: $realtimeTotalFrames | 语音帧: $realtimeSpeechFrames | 连续语音帧: $realtimeContinuousSpeechFrames")
// 多人对话过滤
if (isMultiPersonDialogueDetected) { if (isMultiPersonDialogueDetected) {
LogUtils.w(TAG, "❌ 过滤多人对话垃圾语音(实时识别) | 时长: $duration ms") LogUtils.w(TAG, "❌ 过滤多人对话垃圾语音 | 时长: $duration ms")
hasInvalidSpeech = true hasInvalidSpeech = true
resetToWaitSpeech() resetToWaitSpeech()
return return
} }
// ========== 步骤1优先声纹验证核心仅当前用户可通过 ========== // 声纹验证(核心极简版)
if (ENABLE_STRICT_SPEAKER_VERIFY) { if (ENABLE_STRICT_SPEAKER_VERIFY) {
val isCurrentUser = verifySpeaker(audioBuffer.toFloatArray()) val isCurrentUser = verifySpeaker(audio)
if (!isCurrentUser) { if (!isCurrentUser) {
LogUtils.w(TAG, "❌ 非当前唤醒用户,直接拒绝语音 | 录音时长: $duration ms") LogUtils.w(TAG, "❌ 非当前唤醒用户,拒绝语音 | 录音时长: $duration ms | 嘈杂环境: $isNoisyEnvironment")
hasInvalidSpeech = true hasInvalidSpeech = true
resetToWaitSpeech() resetToWaitSpeech()
return return
} }
LogUtils.d(TAG, "✅ 当前用户语音,继续处理 | 录音时长: $duration ms") LogUtils.d(TAG, "✅ 当前用户语音,继续处理 | 录音时长: $duration ms | 嘈杂环境: $isNoisyEnvironment")
} }
// ========== 1. 强制兜底:正常语音直接通过(阈值降低) ==========
val isNormalVoice = avgEnergy >= MIN_NORMAL_VOICE_ENERGY && vadRatio >= MIN_NORMAL_VOICE_VAD_RATIO
if (isNormalVoice) {
LogUtils.i(TAG, "✅ 正常语音强制通过 | 能量: $avgEnergy$MIN_NORMAL_VOICE_ENERGY | 占比: $vadRatio$MIN_NORMAL_VOICE_VAD_RATIO")
audioBuffer.clear()
state = VoiceState.UPLOADING
onFinalAudio(audio)
resetRealtimeStats()
hasInvalidSpeech = false
return
}
// ========== 2. 远场过滤(近距离场景几乎不生效) ========== // 远场过滤
val isFarField = avgEnergy < MAX_FAR_FIELD_ENERGY val isFarField = avgEnergy < MAX_FAR_FIELD_ENERGY
val isInvalidPeakRatio = peakAvgRatio < MIN_VALID_PEAK_AVG_RATIO val isInvalidPeakRatio = peakAvgRatio < MIN_VALID_PEAK_AVG_RATIO
if (isFarField && isInvalidPeakRatio) { if (isFarField && isInvalidPeakRatio) {
@ -485,7 +457,7 @@ class VoiceController(
return return
} }
// ========== 3. 非连续判定(大幅放宽) ========== // 非连续判定
val continuousRatio = if (realtimeSpeechFrames > 0) realtimeContinuousSpeechFrames.toFloat() / realtimeSpeechFrames else 0f val continuousRatio = if (realtimeSpeechFrames > 0) realtimeContinuousSpeechFrames.toFloat() / realtimeSpeechFrames else 0f
val peakPositionRatio = vadManager.getPeakPositionRatio() val peakPositionRatio = vadManager.getPeakPositionRatio()
val isDiscontinuous = continuousRatio < MIN_CONTINUOUS_FRAME_RATIO && val isDiscontinuous = continuousRatio < MIN_CONTINUOUS_FRAME_RATIO &&
@ -498,34 +470,21 @@ class VoiceController(
return return
} }
// ========== 4. 分场景动态阈值计算(系数大幅降低) ========== // 分场景阈值过滤
val isQuietEnv = currentEnvBaseline < BASELINE_QUIET_THRESHOLD val isQuietEnv = currentEnvBaseline < BASELINE_QUIET_THRESHOLD
val thresholdConfig = when { val thresholdConfig = when {
duration in SHORT_SPEECH_MIN..SHORT_SPEECH_MAX -> { duration in SHORT_SPEECH_MIN..SHORT_SPEECH_MAX -> {
val coeff = if (isQuietEnv) SHORT_SPEECH_ENERGY_COEFF_QUIET else SHORT_SPEECH_ENERGY_COEFF_NOISY val coeff = if (isQuietEnv) SHORT_SPEECH_ENERGY_COEFF_QUIET else SHORT_SPEECH_ENERGY_COEFF_NOISY
val energyThreshold = currentEnvBaseline * coeff val energyThreshold = currentEnvBaseline * coeff
LogUtils.d(TAG, "📏 短语音阈值 | 场景: ${if (isQuietEnv) "安静" else "嘈杂"} | 系数: $coeff | 阈值: $energyThreshold") ThresholdConfig(energyThreshold, SHORT_SPEECH_VAD_COEFF, SHORT_SPEECH_MIN_SCORE, "短语音")
ThresholdConfig(
energyThreshold = energyThreshold,
vadRatioThreshold = SHORT_SPEECH_VAD_COEFF,
minScore = SHORT_SPEECH_MIN_SCORE,
scene = "短语音"
)
} }
else -> { else -> {
val coeff = if (isQuietEnv) LONG_SPEECH_ENERGY_COEFF_QUIET else LONG_SPEECH_ENERGY_COEFF_NOISY val coeff = if (isQuietEnv) LONG_SPEECH_ENERGY_COEFF_QUIET else LONG_SPEECH_ENERGY_COEFF_NOISY
val energyThreshold = currentEnvBaseline * coeff val energyThreshold = currentEnvBaseline * coeff
LogUtils.d(TAG, "📏 长语音阈值 | 场景: ${if (isQuietEnv) "安静" else "嘈杂"} | 系数: $coeff | 阈值: $energyThreshold") ThresholdConfig(energyThreshold, LONG_SPEECH_VAD_COEFF, LONG_SPEECH_MIN_SCORE, "长语音")
ThresholdConfig(
energyThreshold = energyThreshold,
vadRatioThreshold = LONG_SPEECH_VAD_COEFF,
minScore = LONG_SPEECH_MIN_SCORE,
scene = "长语音"
)
} }
} }
// ========== 5. 分场景阈值过滤(阈值降低) ==========
val energyPass = avgEnergy >= thresholdConfig.energyThreshold val energyPass = avgEnergy >= thresholdConfig.energyThreshold
val vadRatioPass = vadRatio >= thresholdConfig.vadRatioThreshold val vadRatioPass = vadRatio >= thresholdConfig.vadRatioThreshold
if (!energyPass || !vadRatioPass) { if (!energyPass || !vadRatioPass) {
@ -535,7 +494,7 @@ class VoiceController(
return return
} }
// ========== 6. 评分判定门槛降低到1 ========== // 评分判定
var score = 0 var score = 0
score += when { score += when {
duration >= 4000 -> 3 duration >= 4000 -> 3
@ -553,16 +512,16 @@ class VoiceController(
return return
} }
// ========== 最终通过 ========== // 最终通过
audioBuffer.clear() audioBuffer.clear()
state = VoiceState.UPLOADING state = VoiceState.UPLOADING
onFinalAudio(audio) onFinalAudio(audio)
resetRealtimeStats() resetRealtimeStats()
hasInvalidSpeech = false hasInvalidSpeech = false
LogUtils.i(TAG, "近距离轻声通过 | 时长: $duration ms | 能量: $avgEnergy | 场景: ${thresholdConfig.scene}") LogUtils.i(TAG, "语音通过 | 时长: $duration ms | 能量: $avgEnergy | 场景: ${thresholdConfig.scene} | 嘈杂环境: $isNoisyEnvironment")
} }
/* ================= 重置实时统计变量 ================= */ /* ================= 重置实时统计 ================= */
private fun resetRealtimeStats() { private fun resetRealtimeStats() {
realtimeEnergySum = 0f realtimeEnergySum = 0f
realtimeEnergyCount = 0 realtimeEnergyCount = 0
@ -574,15 +533,15 @@ class VoiceController(
isMultiPersonDialogueDetected = false isMultiPersonDialogueDetected = false
} }
/* ================= 播放/上传/Reset 回调 ================= */ /* ================= 播放/上传回调 ================= */
fun onPlayStartPrompt() { fun onPlayStartPrompt() {
LogUtils.d(TAG, "🎵 播放提示音 | 基线: $currentEnvBaseline") LogUtils.d(TAG, "🎵 播放提示音 | 基线: $currentEnvBaseline | 嘈杂环境: $isNoisyEnvironment")
state = VoiceState.PLAYING_PROMPT state = VoiceState.PLAYING_PROMPT
} }
fun onPlayEndPrompt() { fun onPlayEndPrompt() {
speechEnableAtMs = System.currentTimeMillis() + SPEECH_COOLDOWN_MS speechEnableAtMs = System.currentTimeMillis() + SPEECH_COOLDOWN_MS
LogUtils.d(TAG, "🎵 提示音结束 | 基线: $currentEnvBaseline") LogUtils.d(TAG, "🎵 提示音结束 | 基线: $currentEnvBaseline | 嘈杂环境: $isNoisyEnvironment")
state = VoiceState.WAIT_SPEECH_COOLDOWN state = VoiceState.WAIT_SPEECH_COOLDOWN
} }
@ -591,19 +550,19 @@ class VoiceController(
LogUtils.w(TAG, "🎶 非上传完成状态,禁止切换到 PLAYING_BACKEND | 当前状态: $state") LogUtils.w(TAG, "🎶 非上传完成状态,禁止切换到 PLAYING_BACKEND | 当前状态: $state")
return return
} }
LogUtils.d(TAG, "🎶 开始播放后台音频 | 基线: $currentEnvBaseline") LogUtils.d(TAG, "🎶 开始播放后台音频 | 基线: $currentEnvBaseline | 嘈杂环境: $isNoisyEnvironment")
state = VoiceState.PLAYING_BACKEND state = VoiceState.PLAYING_BACKEND
} }
fun onPlayEndBackend() { fun onPlayEndBackend() {
speechEnableAtMs = System.currentTimeMillis() + SPEECH_COOLDOWN_MS speechEnableAtMs = System.currentTimeMillis() + SPEECH_COOLDOWN_MS
LogUtils.d(TAG, "🎶 后台音频结束 | 基线: $currentEnvBaseline") LogUtils.d(TAG, "🎶 后台音频结束 | 基线: $currentEnvBaseline | 嘈杂环境: $isNoisyEnvironment")
state = VoiceState.WAIT_SPEECH_COOLDOWN state = VoiceState.WAIT_SPEECH_COOLDOWN
} }
fun onUploadFinished(success: Boolean) { fun onUploadFinished(success: Boolean) {
if (state != VoiceState.UPLOADING) return if (state != VoiceState.UPLOADING) return
LogUtils.d(TAG, "📤 上传完成 | 成功: $success | 基线: $currentEnvBaseline") LogUtils.d(TAG, "📤 上传完成 | 成功: $success | 基线: $currentEnvBaseline | 嘈杂环境: $isNoisyEnvironment")
if (!success) { if (!success) {
speechEnableAtMs = System.currentTimeMillis() + SPEECH_COOLDOWN_MS speechEnableAtMs = System.currentTimeMillis() + SPEECH_COOLDOWN_MS
@ -612,7 +571,7 @@ class VoiceController(
} }
private fun resetToWaitSpeech() { private fun resetToWaitSpeech() {
LogUtils.d(TAG, "🔄 重置到等待说话 | 基线: $currentEnvBaseline | 已标记无效说话: $hasInvalidSpeech") LogUtils.d(TAG, "🔄 重置到等待说话 | 基线: $currentEnvBaseline | 嘈杂环境: $isNoisyEnvironment | 已标记无效说话: $hasInvalidSpeech")
val now = System.currentTimeMillis() val now = System.currentTimeMillis()
if (now - lastInvalidResetMs < INVALID_RESET_DEBOUNCE_MS) { if (now - lastInvalidResetMs < INVALID_RESET_DEBOUNCE_MS) {
LogUtils.d(TAG, "🛡 防抖1.5秒内重复无效语音,跳过重置") LogUtils.d(TAG, "🛡 防抖1.5秒内重复无效语音,跳过重置")
@ -628,7 +587,7 @@ class VoiceController(
} }
private fun resetAll() { private fun resetAll() {
LogUtils.d(TAG, "🔄 重置所有状态 | 基线: $currentEnvBaseline | 本次超时类型: $currentTimeoutType") LogUtils.d(TAG, "🔄 重置所有状态 | 基线: $currentEnvBaseline | 嘈杂环境: $isNoisyEnvironment | 本次超时类型: $currentTimeoutType")
audioBuffer.clear() audioBuffer.clear()
preBuffer.clear() preBuffer.clear()
vadManager.reset() vadManager.reset()
@ -638,23 +597,23 @@ class VoiceController(
waitSpeechFailStartMs = 0L waitSpeechFailStartMs = 0L
envNoiseBuffer.clear() envNoiseBuffer.clear()
currentEnvBaseline = 0.001f currentEnvBaseline = 0.001f
isNoisyEnvironment = false
resetRealtimeStats() resetRealtimeStats()
hasInvalidSpeech = false hasInvalidSpeech = false
currentTimeoutType = TimeoutType.IDLE_TIMEOUT currentTimeoutType = TimeoutType.IDLE_TIMEOUT
LogUtils.d(TAG, "🔄 环境基线已重置 | 新基线: $currentEnvBaseline | 无效说话标记已重置")
state = VoiceState.WAIT_WAKEUP state = VoiceState.WAIT_WAKEUP
} }
fun release() { fun release() {
LogUtils.d(TAG, "🔌 释放资源 | 最终基线: $currentEnvBaseline") LogUtils.d(TAG, "🔌 释放资源 | 最终基线: $currentEnvBaseline | 嘈杂环境: $isNoisyEnvironment")
wakeupManager.release() wakeupManager.release()
vadManager.reset() vadManager.reset()
envNoiseBuffer.clear() envNoiseBuffer.clear()
resetRealtimeStats() resetRealtimeStats()
hasInvalidSpeech = false hasInvalidSpeech = false
currentTimeoutType = TimeoutType.IDLE_TIMEOUT currentTimeoutType = TimeoutType.IDLE_TIMEOUT
isNoisyEnvironment = false
// 释放声纹识别器资源
runCatching { runCatching {
SpeakerRecognition.extractor.release() SpeakerRecognition.extractor.release()
speakerManagerLock.withLock { speakerManagerLock.withLock {
@ -666,7 +625,6 @@ class VoiceController(
} }
} }
// 兜底释放防止未调用release
protected fun finalize() { protected fun finalize() {
runCatching { runCatching {
release() release()
@ -690,60 +648,66 @@ class VoiceController(
val scene: String val scene: String
) )
/* ================= 核心原生Stream声纹验证仅当前用户有效 ================= */ /* ================= 核心:极简版声纹验证 ================= */
/**
* 验证语音是否属于当前唤醒用户完全适配你提供的API
* @param audio 待验证的语音数据
* @return true=是当前用户false=非当前用户
*/
private fun verifySpeaker(audio: FloatArray): Boolean { private fun verifySpeaker(audio: FloatArray): Boolean {
if (audio.isEmpty()) { if (audio.isEmpty()) {
LogUtils.w(TAG, "❌ 待验证音频为空,声纹验证失败") LogUtils.w(TAG, "❌ 待验证音频为空,声纹验证失败")
return false return false
} }
// 1. 裁剪音频:只保留本次录音的有效部分(解决时长不匹配问题)
val audioDurationMs = (audio.size.toFloat() / SAMPLE_RATE * 1000).toLong()
// 只保留最后 N 毫秒的音频N = 实际录音时长),避免缓存旧音频
val validAudio = if (audioDurationMs > 0) {
val validSampleCount = (audioDurationMs * SAMPLE_RATE / 1000).toInt()
if (validSampleCount < audio.size) {
audio.copyOfRange(audio.size - validSampleCount, audio.size)
} else {
audio
}
} else {
audio
}
// 2. 分场景选阈值(无容错,只调阈值)
val finalThreshold = when {
audioDurationMs < SHORT_AUDIO_DURATION_MS -> SPEAKER_THRESHOLD_SHORT
isNoisyEnvironment -> SPEAKER_THRESHOLD_NOISY
else -> SPEAKER_THRESHOLD_QUIET
}
var stream: OnlineStream? = null var stream: OnlineStream? = null
return try { return try {
stream = SpeakerRecognition.extractor.createStream() stream = SpeakerRecognition.extractor.createStream()
stream.acceptWaveform(samples = audio, sampleRate = SAMPLE_RATE) stream.acceptWaveform(samples = validAudio, sampleRate = SAMPLE_RATE) // 用裁剪后的音频验证
stream.inputFinished() stream.inputFinished()
if (!SpeakerRecognition.extractor.isReady(stream)) { if (!SpeakerRecognition.extractor.isReady(stream)) {
LogUtils.w(TAG, "❌ 验证音频Stream未就绪验证失败") LogUtils.w(TAG, "音频Stream未就绪验证失败")
return false return false
} }
val embedding = SpeakerRecognition.extractor.compute(stream) val embedding = SpeakerRecognition.extractor.compute(stream)
// 动态选择阈值
val threshold = if (audio.size < SHORT_AUDIO_THRESHOLD) {
LogUtils.d(TAG, "📢 检测到短速语音,使用放宽阈值: $SPEAKER_VERIFY_THRESHOLD_SHORT")
SPEAKER_VERIFY_THRESHOLD_SHORT
} else {
SPEAKER_VERIFY_THRESHOLD_NORMAL
}
// 加锁验证 // 3. 纯验证逻辑:过就过,不过就拒绝
speakerManagerLock.withLock { speakerManagerLock.withLock {
val verifyPass = SpeakerRecognition.manager.verify( val verifyPass = SpeakerRecognition.manager.verify(
name = CURRENT_USER_ID, name = CURRENT_USER_ID,
embedding = embedding, embedding = embedding,
threshold = threshold threshold = finalThreshold
) )
if (verifyPass) {
LogUtils.d(TAG, "✅ 声纹验证通过 | 阈值: $threshold") // 打印关键信息(补充裁剪后时长)
} else { LogUtils.d(TAG, "📊 声纹验证 | 阈值: $finalThreshold | 通过: $verifyPass | 嘈杂环境: $isNoisyEnvironment | 原始时长: ${audioDurationMs}ms | 验证时长: ${(validAudio.size.toFloat()/SAMPLE_RATE*1000).toLong()}ms")
LogUtils.w(TAG, "❌ 声纹验证失败 | 阈值: $threshold")
} // 无任何容错:验证结果就是最终结果
return verifyPass return verifyPass
} }
} catch (e: Exception) { } catch (e: Exception) {
LogUtils.e(TAG, "❌ 声纹验证异常", e) LogUtils.e(TAG, "❌ 声纹验证异常,拒绝", e)
false return false
} finally { } finally {
// 释放Stream
stream?.release() stream?.release()
LogUtils.d(TAG, "🔄 验证Stream已释放")
} }
} }
} }

View File

@ -49,6 +49,7 @@ import com.zs.smarthuman.kt.releaseIM
import com.zs.smarthuman.sherpa.TimeoutType import com.zs.smarthuman.sherpa.TimeoutType
import com.zs.smarthuman.sherpa.VoiceController import com.zs.smarthuman.sherpa.VoiceController
import com.zs.smarthuman.toast.Toaster import com.zs.smarthuman.toast.Toaster
import com.zs.smarthuman.utils.AudioDebugUtil
import com.zs.smarthuman.utils.AudioPcmUtil import com.zs.smarthuman.utils.AudioPcmUtil
import com.zs.smarthuman.utils.DangerousUtils import com.zs.smarthuman.utils.DangerousUtils
import com.zs.smarthuman.utils.LogFileUtils import com.zs.smarthuman.utils.LogFileUtils
@ -213,12 +214,12 @@ class MainActivity : BaseViewModelActivity<ActivityMainBinding, MainViewModel>()
1 1
) )
// loadLocalJsonAndPlay() // loadLocalJsonAndPlay()
// val file = File( val file = File(
// getExternalFilesDir(Environment.DIRECTORY_DOWNLOADS)!!.getAbsolutePath(), getExternalFilesDir(Environment.DIRECTORY_DOWNLOADS)!!.getAbsolutePath(),
// "xxx.wav" "xxx.wav"
// ) )
// AudioDebugUtil.saveFloatPcmAsWav(audio, file) AudioDebugUtil.saveFloatPcmAsWav(audio, file)
// LogUtils.dTag("audioxx", "WAV saved: ${file.path}, samples=${audio.size}") LogUtils.dTag("audioxx", "WAV saved: ${file.path}, samples=${audio.size}")
lifecycleScope.launch(Dispatchers.Main) { lifecycleScope.launch(Dispatchers.Main) {
mVerticalAnimator?.show() mVerticalAnimator?.show()
@ -291,7 +292,7 @@ class MainActivity : BaseViewModelActivity<ActivityMainBinding, MainViewModel>()
override fun onPause() { override fun onPause() {
super.onPause() super.onPause()
stopRecording() // stopRecording()
UnityPlayerHolder.getInstance().pause() UnityPlayerHolder.getInstance().pause()
} }

View File

@ -41,6 +41,9 @@ class MainViewModel: BaseViewModel() {
RxHttp.postJson(ApiService.UPLOAD_RECORD_VOICE_URL) RxHttp.postJson(ApiService.UPLOAD_RECORD_VOICE_URL)
.add("sessionCode",sessionCode) .add("sessionCode",sessionCode)
.add("audio", audioVoice) .add("audio", audioVoice)
.readTimeout(3000L)
.writeTimeout(3000L)
.connectTimeout(3000L)
.toAwaitResponse<String>() .toAwaitResponse<String>()
.awaitResult() .awaitResult()
.getOrThrow() .getOrThrow()