去除多余的检测

This commit is contained in:
林若思 2026-01-16 18:30:16 +08:00
parent cdc189c5f4
commit c450d8d620
7 changed files with 211 additions and 554 deletions

View File

@ -2,203 +2,100 @@ package com.zs.smarthuman.sherpa
import android.content.res.AssetManager
import com.blankj.utilcode.util.LogUtils
import com.k2fsa.sherpa.onnx.SileroVadModelConfig
import com.k2fsa.sherpa.onnx.Vad
import com.k2fsa.sherpa.onnx.VadModelConfig
import com.k2fsa.sherpa.onnx.getVadModelConfig
import kotlin.math.sqrt
class VadManager(
assetManager: AssetManager,
private val onSpeechStart: () -> Unit,
private val onSpeechEnd: (avgEnergy: Float, peakRms: Float) -> Unit
private val onSpeechEnd: () -> Unit
) {
private val TAG = "SmartHuman-VadManager"
private val TAG = "VadManager"
private val vad: Vad
private var isSpeaking = false
private var lastSpeechTime = 0L
// ========== 核心调整:区分活跃期/收尾期阈值 ==========
// 说话活跃期(容忍停顿)
private val ACTIVE_END_SILENCE_MS = 1500L // 活跃期基础静默(保留停顿容忍)
private val ACTIVE_CONSECUTIVE_FRAMES = 10 // 活跃期连续静音帧
// 说话收尾期(快速结束)
private val FINAL_END_SILENCE_MS = 800L // 收尾期基础静默缩短到800ms
private val FINAL_CONSECUTIVE_FRAMES = 5 // 收尾期连续静音帧5帧=100ms
// 收尾期触发条件最后一次有效语音后超过X秒判定为进入收尾期
private val FINAL_PHASE_TRIGGER_MS = 1000L // 1秒无有效语音进入收尾期
private val ACTIVE_END_SILENCE_MS = 1500L
private val ACTIVE_CONSECUTIVE_FRAMES = 10
private val FINAL_END_SILENCE_MS = 800L
private val FINAL_CONSECUTIVE_FRAMES = 5
private val FINAL_PHASE_TRIGGER_MS = 1000L
private val MAX_SILENCE_AFTER_SPEECH_MS = 2000L
private val MAX_SILENCE_AFTER_SPEECH_MS = 2000L // 兜底阈值从3秒降到2秒
// 原有基础配置
private val MIN_EFFECTIVE_SPEECH_RMS = 0.001f
private val ENV_BASELINE_FACTOR = 1.2f
private var envBaselineRms = 0.0005f
private var lastEffectiveSpeechTime = 0L
private var consecutiveSilenceFrames = 0
// 新增:收尾期标记
private var isInFinalPhase = false
// 统计变量
private var speechEnergySum = 0f
private var speechFrameCount = 0
private var peakRms = 0f
private var totalFrames = 0
private var speechFrames = 0
private var continuousSpeechFrames = 0
private var lastFrameIsSpeech = false
private var peakPosition = 0
private var frameIndex = 0
private var activeFrameCount = 0
private var activeSpeechFrameCount = 0
private var lastEffectiveSpeechTime = 0L
init {
val config = getVadModelConfig(0) ?: throw IllegalStateException("[$TAG] VAD config not found")
vad = Vad(assetManager, config)
val config = getVadModelConfig(0)
?: throw IllegalStateException("[$TAG] VAD config not found")
vad = Vad(assetManager, VadModelConfig(sileroVadModelConfig = SileroVadModelConfig(model = "silero_vad.onnx", threshold = 0.2f)))
LogUtils.i(TAG, "✅ VAD 初始化成功")
}
fun accept(samples: FloatArray) {
val now = System.currentTimeMillis()
vad.acceptWaveform(samples)
val vadHasSpeech = vad.isSpeechDetected()
val rms = calcRms(samples)
// 环境基线更新
if (!vadHasSpeech || rms < MIN_EFFECTIVE_SPEECH_RMS) {
envBaselineRms = (envBaselineRms * 0.9f) + (rms * 0.1f)
}
val effectiveSpeechThreshold = maxOf(MIN_EFFECTIVE_SPEECH_RMS, envBaselineRms * ENV_BASELINE_FACTOR)
val isEffectiveSpeech = vadHasSpeech && rms >= effectiveSpeechThreshold
val isEffectiveSpeech = vadHasSpeech && rms >= MIN_EFFECTIVE_SPEECH_RMS
// ========== 核心优化:动态判定收尾期 ==========
if (isEffectiveSpeech) {
lastEffectiveSpeechTime = now
isInFinalPhase = false // 有有效语音,退出收尾期
isInFinalPhase = false
lastSpeechTime = now
consecutiveSilenceFrames = 0
} else {
// 最后一次有效语音后超过1秒进入收尾期
consecutiveSilenceFrames++
if (now - lastEffectiveSpeechTime >= FINAL_PHASE_TRIGGER_MS) {
isInFinalPhase = true
}
}
// 语音能量统计
if (isEffectiveSpeech) {
speechEnergySum += rms
speechFrameCount++
peakRms = maxOf(peakRms, rms)
lastSpeechTime = now
consecutiveSilenceFrames = 0
LogUtils.v(TAG, "🔊 有效语音帧 | RMS: $rms | 阈值: $effectiveSpeechThreshold | 收尾期: $isInFinalPhase")
} else {
consecutiveSilenceFrames++
LogUtils.v(TAG, if (vadHasSpeech) "⚠ 低能量语音帧 | RMS: $rms | 阈值: $effectiveSpeechThreshold"
else "🔇 静音帧 | 连续静音帧: $consecutiveSilenceFrames | 收尾期: $isInFinalPhase")
}
val (endSilenceMs, endFrames) =
if (isInFinalPhase)
FINAL_END_SILENCE_MS to FINAL_CONSECUTIVE_FRAMES
else
ACTIVE_END_SILENCE_MS to ACTIVE_CONSECUTIVE_FRAMES
// 帧统计
totalFrames++
frameIndex++
if (isEffectiveSpeech) {
speechFrames++
continuousSpeechFrames = if (lastFrameIsSpeech) continuousSpeechFrames + 1 else 1
lastFrameIsSpeech = true
if (rms == peakRms) peakPosition = frameIndex
} else {
lastFrameIsSpeech = false
}
// ========== 核心优化:根据收尾期选择不同阈值 ==========
val (endSilenceMs, consecutiveFrames) = if (isInFinalPhase) {
Pair(FINAL_END_SILENCE_MS, FINAL_CONSECUTIVE_FRAMES)
} else {
Pair(ACTIVE_END_SILENCE_MS, ACTIVE_CONSECUTIVE_FRAMES)
}
// VAD状态流转
if (isEffectiveSpeech) {
if (!isSpeaking) {
isSpeaking = true
LogUtils.d(TAG, "🎤 有效语音开始 | 阈值: $effectiveSpeechThreshold")
onSpeechStart()
}
activeFrameCount++
activeSpeechFrameCount++
} else {
if (isSpeaking) {
activeFrameCount++
val vadSilenceDuration = now - lastSpeechTime
val effectiveSilenceDuration = now - lastEffectiveSpeechTime
} else if (isSpeaking) {
val silenceMs = now - lastSpeechTime
val effectiveSilenceMs = now - lastEffectiveSpeechTime
// 触发结束条件:适配当前阶段的阈值
val isSilenceTimeout = (vadSilenceDuration >= endSilenceMs ||
effectiveSilenceDuration >= MAX_SILENCE_AFTER_SPEECH_MS) &&
consecutiveSilenceFrames >= consecutiveFrames
val shouldEnd =
(silenceMs >= endSilenceMs ||
effectiveSilenceMs >= MAX_SILENCE_AFTER_SPEECH_MS) &&
consecutiveSilenceFrames >= endFrames
if (isSilenceTimeout) {
isSpeaking = false
isInFinalPhase = false // 重置收尾期
val avgEnergy = if (speechFrameCount > 0) speechEnergySum / speechFrameCount else 0f
LogUtils.d(TAG, """
🛑 语音结束
- 有效静默时长: ${effectiveSilenceDuration}ms
- 连续静音帧: $consecutiveSilenceFrames
- 平均能量: $avgEnergy | 峰值: $peakRms
- 收尾期: $isInFinalPhase | 所用阈值: $endSilenceMs ms
""".trimIndent())
onSpeechEnd(avgEnergy, peakRms)
resetStats()
} else {
LogUtils.v(TAG, "⏳ 静默中 | 连续静音帧: $consecutiveSilenceFrames | 静默时长: ${effectiveSilenceDuration}ms | 所用阈值: $endSilenceMs ms")
}
if (shouldEnd) {
onSpeechEnd()
reset()
isSpeaking = false
isInFinalPhase = false
}
}
}
// 保留原有方法...
fun isSpeechDetected(): Boolean {
return vad.isSpeechDetected()
}
fun activeSpeechRatio(): Float {
val ratio = if (activeFrameCount == 0) 0f else activeSpeechFrameCount.toFloat() / activeFrameCount
LogUtils.d(TAG, "📊 语音占比: $ratio | 有效语音帧: $activeSpeechFrameCount | 总帧: $activeFrameCount")
return ratio
}
fun getTotalFrames(): Int = totalFrames
fun getSpeechFrames(): Int = speechFrames
fun getContinuousSpeechFrames(): Int = continuousSpeechFrames
fun getPeakPositionRatio(): Float {
return if (totalFrames == 0) 0f else peakPosition.toFloat() / totalFrames
}
fun reset() {
isSpeaking = false
lastSpeechTime = 0L
lastEffectiveSpeechTime = 0L
envBaselineRms = 0.0005f
consecutiveSilenceFrames = 0
isInFinalPhase = false // 重置收尾期
resetStats()
isInFinalPhase = false
vad.reset()
totalFrames = 0
speechFrames = 0
continuousSpeechFrames = 0
lastFrameIsSpeech = false
peakPosition = 0
frameIndex = 0
LogUtils.d(TAG, "🔄 VAD 状态已完全重置")
}
private fun resetStats() {
activeFrameCount = 0
activeSpeechFrameCount = 0
speechEnergySum = 0f
speechFrameCount = 0
peakRms = 0f
}
fun calcRms(samples: FloatArray): Float {

View File

@ -15,7 +15,7 @@ class VoiceController(
assetManager: AssetManager,
private val onWakeup: () -> Unit,
private val onFinalAudio: (FloatArray) -> Unit,
idleTimeoutSeconds: Int = 200,
idleTimeoutSeconds: Int = 10,
maxRecordingSeconds: Int = 10,
private val onStateChanged: ((VoiceState) -> Unit)? = null,
private val stopBackendAudio: (() -> Unit)? = null,
@ -30,20 +30,14 @@ class VoiceController(
// 预缓存大小2秒
private const val PRE_BUFFER_SIZE = SAMPLE_RATE * 2
// ========== 核心:分场景声纹阈值(极简版) ==========
private const val SPEAKER_THRESHOLD_QUIET = 0.50f // 安静环境
private const val SPEAKER_THRESHOLD_NOISY = 0.45f // 嘈杂环境(匹配你的真实相似度)
private const val SPEAKER_THRESHOLD_SHORT = 0.43f // 短语音(<1秒
// 短语音判定阈值
private const val SHORT_AUDIO_DURATION_MS = 1000L
private const val INVALID_RESET_DEBOUNCE_MS = 1500L
// 最小语音时长
private const val MIN_SPEECH_MS = 800L
private const val MIN_EFFECTIVE_VOICE_DURATION = 400L
// 噪音场景判定阈值
private const val NOISE_BASELINE_THRESHOLD = 0.01f
// 统一的声纹验证阈值(不再分场景)
private const val SPEAKER_THRESHOLD = 0.45f
}
var state: VoiceState = VoiceState.WAIT_WAKEUP
@ -53,26 +47,17 @@ class VoiceController(
onStateChanged?.invoke(value)
}
// 实时能量与帧统计变量
private var realtimeEnergySum = 0f
private var realtimeEnergyCount = 0
private var realtimePeakRms = 0f
private var realtimeTotalFrames = 0
private var realtimeSpeechFrames = 0
private var realtimeContinuousSpeechFrames = 0
private var realtimeLastFrameIsSpeech = false
private var isMultiPersonDialogueDetected = false
// 无效说话标记 + 超时类型
private var hasInvalidSpeech = false
private var currentTimeoutType: TimeoutType = TimeoutType.IDLE_TIMEOUT
private var lastInvalidResetMs = 0L
private val speakerManagerLock = ReentrantLock()
// 环境噪音状态标记
private var isNoisyEnvironment = false
private val wakeupManager = WakeupManager(assetManager, onWakeup)
private val vadManager = VadManager(
assetManager,
onSpeechStart = { onVadStart() },
onSpeechEnd = { avgEnergy, peakRms -> onVadEnd(avgEnergy, peakRms) }
onSpeechEnd = { onVadEnd() }
)
private val audioBuffer = mutableListOf<Float>()
@ -92,50 +77,6 @@ class VoiceController(
private val idleTimeoutMs = idleTimeoutSeconds * 1000L
private val maxRecordingMs = maxRecordingSeconds * 1000L
// 分场景动态系数(保留原有逻辑)
private val BASELINE_WINDOW_SIZE = 50
private val envNoiseBuffer = ArrayDeque<Float>(BASELINE_WINDOW_SIZE)
private var currentEnvBaseline = 0.001f
// 分场景动态系数
private val BASELINE_QUIET_THRESHOLD = 0.005f
private val SHORT_SPEECH_ENERGY_COEFF_QUIET = 1.5f
private val SHORT_SPEECH_ENERGY_COEFF_NOISY = 2.0f
private val LONG_SPEECH_ENERGY_COEFF_QUIET = 2.5f
private val LONG_SPEECH_ENERGY_COEFF_NOISY = 3.5f
private val SHORT_SPEECH_VAD_COEFF = 0.05f
private val LONG_SPEECH_VAD_COEFF = 0.10f
private val SHORT_SPEECH_MIN_SCORE = 1
private val LONG_SPEECH_MIN_SCORE = 1
// 其他过滤参数
private val MAX_FAR_FIELD_ENERGY = 0.015f
private val MIN_VALID_PEAK_AVG_RATIO = 0.5f
private val MIN_CONTINUOUS_FRAME_RATIO = 0.1f
private val MAX_PEAK_POSITION_RATIO = 0.95f
private val MIN_EFFECTIVE_SPEECH_FRAMES = 3
private val SHORT_SPEECH_MIN = 500L
private val SHORT_SPEECH_MAX = 2000L
// 多人对话过滤配置
private val MULTI_DIALOGUE_MIN_DURATION = 2500L
private val MULTI_DIALOGUE_MAX_PEAK_AVG_RATIO = 2.5f
private val MULTI_DIALOGUE_MIN_PEAK_AVG_RATIO = 0.4f
private val MULTI_DIALOGUE_MAX_CONTINUOUS_RATIO = 0.3f
private val MULTI_DIALOGUE_MIN_VAD_RATIO = 0.55f
// 微弱人声过滤配置
private val MIN_VOICE_FRAME_RATIO = 0.08f
private val MIN_PEAK_ENERGY_RATIO = 1.5f
private val NORMAL_VOICE_ENERGY_THRESHOLD = 0.008f
private val MIN_CONTINUOUS_VOICE_FRAMES = 1
private val MIN_EFFECTIVE_SPEECH_RMS = 0.0005f
// 无效说话标记 + 超时类型
private var hasInvalidSpeech = false
private var currentTimeoutType: TimeoutType = TimeoutType.IDLE_TIMEOUT
// 声纹验证相关
private val CURRENT_USER_ID = "current_wakeup_user"
private val ENABLE_STRICT_SPEAKER_VERIFY = true
@ -200,12 +141,6 @@ class VoiceController(
val now = System.currentTimeMillis()
if (state == VoiceState.WAIT_WAKEUP) {
calibrateEnvBaseline(samples)
isNoisyEnvironment = currentEnvBaseline >= NOISE_BASELINE_THRESHOLD
LogUtils.d(TAG, "📊 环境状态 | 基线: $currentEnvBaseline | 嘈杂环境: $isNoisyEnvironment")
}
when (state) {
VoiceState.WAIT_WAKEUP,
VoiceState.PLAYING_PROMPT,
@ -246,81 +181,15 @@ class VoiceController(
audioBuffer.addAll(samples.asList())
vadManager.accept(samples)
calibrateEnvBaseline(samples)
updateRealtimeEnergy(samples)
updateRealtimeFrameStats()
isNoisyEnvironment = currentEnvBaseline >= NOISE_BASELINE_THRESHOLD
if (checkMultiPersonDialogueRealtime(now)) {
LogUtils.w(TAG, "🚨 录音中识别出多人对话,提前终止")
finishSentence(realtimeEnergySum / realtimeEnergyCount, realtimePeakRms)
return
}
// 仅保留最大录音时长判断
if (System.currentTimeMillis() - recordingStartMs > maxRecordingMs) {
LogUtils.w(TAG, "⏱ Max recording reached | 当前环境基线: $currentEnvBaseline | 嘈杂环境: $isNoisyEnvironment")
finishSentence(realtimeEnergySum / realtimeEnergyCount, realtimePeakRms)
LogUtils.w(TAG, "⏱ Max recording reached")
finishSentence()
}
}
}
}
/* ================= 实时能量更新 ================= */
private fun updateRealtimeEnergy(samples: FloatArray) {
val rms = vadManager.calcRms(samples)
val effectiveThreshold = if (isNoisyEnvironment) currentEnvBaseline * 1.8f else MIN_EFFECTIVE_SPEECH_RMS
if (rms >= effectiveThreshold) {
realtimeEnergySum += rms
realtimeEnergyCount++
realtimePeakRms = maxOf(realtimePeakRms, rms)
}
}
/* ================= 实时帧统计 ================= */
private fun updateRealtimeFrameStats() {
realtimeTotalFrames = vadManager.getTotalFrames()
realtimeSpeechFrames = vadManager.getSpeechFrames()
realtimeContinuousSpeechFrames = vadManager.getContinuousSpeechFrames()
val currentFrameIsSpeech = vadManager.isSpeechDetected()
if (currentFrameIsSpeech) {
realtimeContinuousSpeechFrames = if (realtimeLastFrameIsSpeech) realtimeContinuousSpeechFrames + 1 else 1
} else {
realtimeContinuousSpeechFrames = 0
}
realtimeLastFrameIsSpeech = currentFrameIsSpeech
}
/* ================= 多人对话检测 ================= */
private fun checkMultiPersonDialogueRealtime(now: Long): Boolean {
val duration = now - recordingStartMs
if (duration < MULTI_DIALOGUE_MIN_DURATION) return false
val avgEnergy = if (realtimeEnergyCount > 0) realtimeEnergySum / realtimeEnergyCount else 0f
val peakAvgRatio = if (avgEnergy > 0) realtimePeakRms / avgEnergy else 0f
val continuousRatio = if (realtimeSpeechFrames > 0) realtimeContinuousSpeechFrames.toFloat() / realtimeSpeechFrames else 0f
val vadRatio = vadManager.activeSpeechRatio()
isMultiPersonDialogueDetected = duration >= MULTI_DIALOGUE_MIN_DURATION &&
peakAvgRatio in MULTI_DIALOGUE_MIN_PEAK_AVG_RATIO..MULTI_DIALOGUE_MAX_PEAK_AVG_RATIO &&
continuousRatio <= MULTI_DIALOGUE_MAX_CONTINUOUS_RATIO &&
vadRatio >= MULTI_DIALOGUE_MIN_VAD_RATIO
return isMultiPersonDialogueDetected
}
/* ================= 环境基线校准 ================= */
private fun calibrateEnvBaseline(samples: FloatArray) {
val rms = vadManager.calcRms(samples)
val validRms = if (rms < currentEnvBaseline + 0.002f) rms else currentEnvBaseline
if (rms < 0.015f) {
if (envNoiseBuffer.size >= BASELINE_WINDOW_SIZE) {
envNoiseBuffer.removeFirst()
}
envNoiseBuffer.addLast(validRms)
currentEnvBaseline = envNoiseBuffer.maxOrNull() ?: 0.001f
}
}
/* ================= 唤醒处理 ================= */
private fun handleWakeupEvent() {
if (state == VoiceState.UPLOADING) return
@ -339,207 +208,73 @@ class VoiceController(
audioBuffer.clear()
vadManager.reset()
vadStarted = false
resetRealtimeStats()
}
inKwsObserve = true
kwsObserveStartMs = System.currentTimeMillis()
onWakeup()
LogUtils.d(TAG, "🔔 唤醒成功 | 环境基线: $currentEnvBaseline")
LogUtils.d(TAG, "🔔 唤醒成功")
}
private fun onVadStart() {
if (state != VoiceState.WAIT_SPEECH) return
LogUtils.d(TAG, "🎤 REAL VAD START | 环境基线: $currentEnvBaseline | 嘈杂环境: $isNoisyEnvironment")
LogUtils.d(TAG, "🎤 REAL VAD START")
vadStarted = true
recordingStartMs = System.currentTimeMillis()
audioBuffer.clear()
audioBuffer.addAll(preBuffer)
resetRealtimeStats()
state = VoiceState.RECORDING
}
private fun onVadEnd(avgEnergy: Float, peakRms: Float) {
private fun onVadEnd() {
if (state != VoiceState.RECORDING) return
LogUtils.d(TAG, "🧠 VAD END | 环境基线: $currentEnvBaseline | 嘈杂环境: $isNoisyEnvironment")
val realAvgEnergy = if (realtimeEnergyCount > 0) realtimeEnergySum / realtimeEnergyCount else avgEnergy
val realPeakRms = if (realtimePeakRms > 0) realtimePeakRms else peakRms
finishSentence(realAvgEnergy, realPeakRms)
}
/* ================= 微弱人声过滤 ================= */
private fun filterWeakVoice(duration: Long, avgEnergy: Float, peakRms: Float): Boolean {
if (duration < MIN_EFFECTIVE_VOICE_DURATION) {
LogUtils.w(TAG, "❌ 微弱人声过滤:时长${duration}ms < ${MIN_EFFECTIVE_VOICE_DURATION}ms")
return true
}
val voiceFrameRatio = if (realtimeTotalFrames > 0) realtimeSpeechFrames.toFloat() / realtimeTotalFrames else 0f
if (avgEnergy < NORMAL_VOICE_ENERGY_THRESHOLD && voiceFrameRatio < MIN_VOICE_FRAME_RATIO) {
LogUtils.w(TAG, "❌ 微弱人声过滤:帧占比${voiceFrameRatio} < ${MIN_VOICE_FRAME_RATIO}")
return true
}
val peakBaselineRatio = peakRms / currentEnvBaseline
if (avgEnergy < NORMAL_VOICE_ENERGY_THRESHOLD && peakBaselineRatio < MIN_PEAK_ENERGY_RATIO) {
LogUtils.w(TAG, "❌ 微弱人声过滤:峰值/基线${peakBaselineRatio} < ${MIN_PEAK_ENERGY_RATIO}")
return true
}
if (avgEnergy < NORMAL_VOICE_ENERGY_THRESHOLD && realtimeContinuousSpeechFrames < MIN_CONTINUOUS_VOICE_FRAMES) {
LogUtils.w(TAG, "❌ 微弱人声过滤:连续帧${realtimeContinuousSpeechFrames} < ${MIN_CONTINUOUS_VOICE_FRAMES}")
return true
}
val energyBaselineRatio = avgEnergy / currentEnvBaseline
if (avgEnergy < 0.005f && energyBaselineRatio < 1.2f) {
LogUtils.w(TAG, "❌ 微弱人声过滤:能量/基线${energyBaselineRatio} < 1.2")
return true
}
return false
LogUtils.d(TAG, "🧠 VAD END")
finishSentence()
}
/* ================= 结束录音 ================= */
private fun finishSentence(avgEnergy: Float = 0f, peakRms: Float = 0f) {
private fun finishSentence() {
val now = System.currentTimeMillis()
val duration = now - recordingStartMs
if (!vadStarted || duration < MIN_SPEECH_MS) {
LogUtils.d(TAG, "❌ 语音过短: $duration ms | 基线: $currentEnvBaseline | 嘈杂环境: $isNoisyEnvironment")
hasInvalidSpeech = true
resetToWaitSpeech()
return
}
if (filterWeakVoice(duration, avgEnergy, peakRms)) {
LogUtils.d(TAG, "❌ 语音过短: $duration ms")
hasInvalidSpeech = true
resetToWaitSpeech()
return
}
val audio = audioBuffer.toFloatArray()
val vadRatio = vadManager.activeSpeechRatio()
val peakAvgRatio = if (avgEnergy > 0f) peakRms / avgEnergy else 0f
LogUtils.d(TAG, "📊 录音信息 | 时长: $duration ms | 能量: $avgEnergy | 峰均比: $peakAvgRatio | 基线: $currentEnvBaseline | 嘈杂环境: $isNoisyEnvironment")
LogUtils.d(TAG, "📊 实时帧统计 | 总帧: $realtimeTotalFrames | 语音帧: $realtimeSpeechFrames | 连续语音帧: $realtimeContinuousSpeechFrames")
if (isMultiPersonDialogueDetected) {
LogUtils.w(TAG, "❌ 过滤多人对话垃圾语音 | 时长: $duration ms")
hasInvalidSpeech = true
resetToWaitSpeech()
return
}
// 声纹验证(核心极简版)
// 声纹验证(保留核心逻辑)
if (ENABLE_STRICT_SPEAKER_VERIFY) {
val isCurrentUser = verifySpeaker(audio)
if (!isCurrentUser) {
LogUtils.w(TAG, "❌ 非当前唤醒用户,拒绝语音 | 录音时长: $duration ms | 嘈杂环境: $isNoisyEnvironment")
LogUtils.w(TAG, "❌ 非当前唤醒用户,拒绝语音 | 录音时长: $duration ms")
hasInvalidSpeech = true
resetToWaitSpeech()
return
}
LogUtils.d(TAG, "✅ 当前用户语音,继续处理 | 录音时长: $duration ms | 嘈杂环境: $isNoisyEnvironment")
}
// 远场过滤
val isFarField = avgEnergy < MAX_FAR_FIELD_ENERGY
val isInvalidPeakRatio = peakAvgRatio < MIN_VALID_PEAK_AVG_RATIO
if (isFarField && isInvalidPeakRatio) {
LogUtils.w(TAG, "❌ 远场/无效语音过滤 | 能量: $avgEnergy < $MAX_FAR_FIELD_ENERGY")
hasInvalidSpeech = true
resetToWaitSpeech()
return
}
// 非连续判定
val continuousRatio = if (realtimeSpeechFrames > 0) realtimeContinuousSpeechFrames.toFloat() / realtimeSpeechFrames else 0f
val peakPositionRatio = vadManager.getPeakPositionRatio()
val isDiscontinuous = continuousRatio < MIN_CONTINUOUS_FRAME_RATIO &&
realtimeSpeechFrames < MIN_EFFECTIVE_SPEECH_FRAMES &&
peakPositionRatio > MAX_PEAK_POSITION_RATIO
if (isDiscontinuous) {
LogUtils.w(TAG, "❌ 非连续杂音过滤 | 连续占比: $continuousRatio < $MIN_CONTINUOUS_FRAME_RATIO")
hasInvalidSpeech = true
resetToWaitSpeech()
return
}
// 分场景阈值过滤
val isQuietEnv = currentEnvBaseline < BASELINE_QUIET_THRESHOLD
val thresholdConfig = when {
duration in SHORT_SPEECH_MIN..SHORT_SPEECH_MAX -> {
val coeff = if (isQuietEnv) SHORT_SPEECH_ENERGY_COEFF_QUIET else SHORT_SPEECH_ENERGY_COEFF_NOISY
val energyThreshold = currentEnvBaseline * coeff
ThresholdConfig(energyThreshold, SHORT_SPEECH_VAD_COEFF, SHORT_SPEECH_MIN_SCORE, "短语音")
}
else -> {
val coeff = if (isQuietEnv) LONG_SPEECH_ENERGY_COEFF_QUIET else LONG_SPEECH_ENERGY_COEFF_NOISY
val energyThreshold = currentEnvBaseline * coeff
ThresholdConfig(energyThreshold, LONG_SPEECH_VAD_COEFF, LONG_SPEECH_MIN_SCORE, "长语音")
}
}
val energyPass = avgEnergy >= thresholdConfig.energyThreshold
val vadRatioPass = vadRatio >= thresholdConfig.vadRatioThreshold
if (!energyPass || !vadRatioPass) {
LogUtils.w(TAG, "❌ 低能量语音阈值过滤 | 能量: $avgEnergy < ${thresholdConfig.energyThreshold} | 占比: $vadRatio < ${thresholdConfig.vadRatioThreshold} | 场景: ${thresholdConfig.scene}")
hasInvalidSpeech = true
resetToWaitSpeech()
return
}
// 评分判定
var score = 0
score += when {
duration >= 4000 -> 3
duration >= 2500 -> 2
else -> 1
}
score += if (avgEnergy >= thresholdConfig.energyThreshold) 1 else 0
score += if (continuousRatio >= MIN_CONTINUOUS_FRAME_RATIO) 1 else 0
val pass = score >= thresholdConfig.minScore
if (!pass) {
LogUtils.w(TAG, "❌ 评分不足过滤 | 总分: $score < ${thresholdConfig.minScore} | 场景: ${thresholdConfig.scene}")
hasInvalidSpeech = true
resetToWaitSpeech()
return
LogUtils.d(TAG, "✅ 当前用户语音,继续处理 | 录音时长: $duration ms")
}
// 最终通过
audioBuffer.clear()
state = VoiceState.UPLOADING
onFinalAudio(audio)
resetRealtimeStats()
hasInvalidSpeech = false
LogUtils.i(TAG, "✅ 语音通过 | 时长: $duration ms | 能量: $avgEnergy | 场景: ${thresholdConfig.scene} | 嘈杂环境: $isNoisyEnvironment")
}
/* ================= 重置实时统计 ================= */
private fun resetRealtimeStats() {
realtimeEnergySum = 0f
realtimeEnergyCount = 0
realtimePeakRms = 0f
realtimeTotalFrames = 0
realtimeSpeechFrames = 0
realtimeContinuousSpeechFrames = 0
realtimeLastFrameIsSpeech = false
isMultiPersonDialogueDetected = false
LogUtils.i(TAG, "✅ 语音通过 | 时长: $duration ms")
}
/* ================= 播放/上传回调 ================= */
fun onPlayStartPrompt() {
LogUtils.d(TAG, "🎵 播放提示音 | 基线: $currentEnvBaseline | 嘈杂环境: $isNoisyEnvironment")
LogUtils.d(TAG, "🎵 播放提示音")
state = VoiceState.PLAYING_PROMPT
}
fun onPlayEndPrompt() {
speechEnableAtMs = System.currentTimeMillis() + SPEECH_COOLDOWN_MS
LogUtils.d(TAG, "🎵 提示音结束 | 基线: $currentEnvBaseline | 嘈杂环境: $isNoisyEnvironment")
LogUtils.d(TAG, "🎵 提示音结束")
state = VoiceState.WAIT_SPEECH_COOLDOWN
}
@ -548,19 +283,19 @@ class VoiceController(
LogUtils.w(TAG, "🎶 非上传完成状态,禁止切换到 PLAYING_BACKEND | 当前状态: $state")
return
}
LogUtils.d(TAG, "🎶 开始播放后台音频 | 基线: $currentEnvBaseline | 嘈杂环境: $isNoisyEnvironment")
LogUtils.d(TAG, "🎶 开始播放后台音频")
state = VoiceState.PLAYING_BACKEND
}
fun onPlayEndBackend() {
speechEnableAtMs = System.currentTimeMillis() + SPEECH_COOLDOWN_MS
LogUtils.d(TAG, "🎶 后台音频结束 | 基线: $currentEnvBaseline | 嘈杂环境: $isNoisyEnvironment")
LogUtils.d(TAG, "🎶 后台音频结束")
state = VoiceState.WAIT_SPEECH_COOLDOWN
}
fun onUploadFinished(success: Boolean) {
if (state != VoiceState.UPLOADING) return
LogUtils.d(TAG, "📤 上传完成 | 成功: $success | 基线: $currentEnvBaseline | 嘈杂环境: $isNoisyEnvironment")
LogUtils.d(TAG, "📤 上传完成 | 成功: $success")
if (!success) {
speechEnableAtMs = System.currentTimeMillis() + SPEECH_COOLDOWN_MS
@ -569,7 +304,7 @@ class VoiceController(
}
private fun resetToWaitSpeech() {
LogUtils.d(TAG, "🔄 重置到等待说话 | 基线: $currentEnvBaseline | 嘈杂环境: $isNoisyEnvironment | 已标记无效说话: $hasInvalidSpeech")
LogUtils.d(TAG, "🔄 重置到等待说话 | 已标记无效说话: $hasInvalidSpeech")
val now = System.currentTimeMillis()
if (now - lastInvalidResetMs < INVALID_RESET_DEBOUNCE_MS) {
LogUtils.d(TAG, "🛡 防抖1.5秒内重复无效语音,跳过重置")
@ -579,13 +314,12 @@ class VoiceController(
audioBuffer.clear()
vadManager.reset()
vadStarted = false
resetRealtimeStats()
state = VoiceState.WAIT_SPEECH
if (waitSpeechFailStartMs == 0L) waitSpeechFailStartMs = System.currentTimeMillis()
}
private fun resetAll() {
LogUtils.d(TAG, "🔄 重置所有状态 | 基线: $currentEnvBaseline | 嘈杂环境: $isNoisyEnvironment | 本次超时类型: $currentTimeoutType")
LogUtils.d(TAG, "🔄 重置所有状态 | 本次超时类型: $currentTimeoutType")
audioBuffer.clear()
preBuffer.clear()
vadManager.reset()
@ -593,24 +327,17 @@ class VoiceController(
vadStarted = false
waitSpeechStartMs = 0L
waitSpeechFailStartMs = 0L
envNoiseBuffer.clear()
currentEnvBaseline = 0.001f
isNoisyEnvironment = false
resetRealtimeStats()
hasInvalidSpeech = false
currentTimeoutType = TimeoutType.IDLE_TIMEOUT
state = VoiceState.WAIT_WAKEUP
}
fun release() {
LogUtils.d(TAG, "🔌 释放资源 | 最终基线: $currentEnvBaseline | 嘈杂环境: $isNoisyEnvironment")
LogUtils.d(TAG, "🔌 释放资源")
wakeupManager.release()
vadManager.reset()
envNoiseBuffer.clear()
resetRealtimeStats()
hasInvalidSpeech = false
currentTimeoutType = TimeoutType.IDLE_TIMEOUT
isNoisyEnvironment = false
runCatching {
SpeakerRecognition.extractor.release()
@ -638,24 +365,14 @@ class VoiceController(
}
}
// 阈值配置数据类
private data class ThresholdConfig(
val energyThreshold: Float,
val vadRatioThreshold: Float,
val minScore: Int,
val scene: String
)
/* ================= 核心:极简版声纹验证 ================= */
private fun verifySpeaker(audio: FloatArray): Boolean {
if (audio.isEmpty()) {
LogUtils.w(TAG, "❌ 待验证音频为空,声纹验证失败")
return false
}
// 1. 裁剪音频:只保留本次录音的有效部分(解决时长不匹配问题)
// 1. 裁剪音频:只保留本次录音的有效部分
val audioDurationMs = (audio.size.toFloat() / SAMPLE_RATE * 1000).toLong()
// 只保留最后 N 毫秒的音频N = 实际录音时长),避免缓存旧音频
val validAudio = if (audioDurationMs > 0) {
val validSampleCount = (audioDurationMs * SAMPLE_RATE / 1000).toInt()
if (validSampleCount < audio.size) {
@ -667,45 +384,44 @@ class VoiceController(
audio
}
// 2. 分场景选阈值(无容错,只调阈值)
val finalThreshold = when {
audioDurationMs < SHORT_AUDIO_DURATION_MS -> SPEAKER_THRESHOLD_SHORT
isNoisyEnvironment -> SPEAKER_THRESHOLD_NOISY
else -> SPEAKER_THRESHOLD_QUIET
}
var stream: OnlineStream? = null
return try {
stream = SpeakerRecognition.extractor.createStream()
stream.acceptWaveform(samples = validAudio, sampleRate = SAMPLE_RATE) // 用裁剪后的音频验证
stream.inputFinished()
if (!SpeakerRecognition.extractor.isReady(stream)) {
// 使用 runCatching 统一处理异常
return runCatching {
stream = SpeakerRecognition.extractor.createStream()
// 处理音频数据
stream?.acceptWaveform(samples = validAudio, sampleRate = SAMPLE_RATE)
stream?.inputFinished()
// 检查 stream 是否就绪
if (stream == null || !SpeakerRecognition.extractor.isReady(stream)) {
LogUtils.w(TAG, "❌ 音频Stream未就绪验证失败")
return false
return@runCatching false
}
// 计算特征并验证
val embedding = SpeakerRecognition.extractor.compute(stream)
// 3. 纯验证逻辑:过就过,不过就拒绝
speakerManagerLock.withLock {
val verifyPass = SpeakerRecognition.manager.verify(
name = CURRENT_USER_ID,
embedding = embedding,
threshold = finalThreshold
threshold = SPEAKER_THRESHOLD
)
// 打印关键信息(补充裁剪后时长)
LogUtils.d(TAG, "📊 声纹验证 | 阈值: $finalThreshold | 通过: $verifyPass | 嘈杂环境: $isNoisyEnvironment | 原始时长: ${audioDurationMs}ms | 验证时长: ${(validAudio.size.toFloat()/SAMPLE_RATE*1000).toLong()}ms")
// 无任何容错:验证结果就是最终结果
return verifyPass
LogUtils.d(TAG, "📊 声纹验证 | 统一阈值: $SPEAKER_THRESHOLD | 通过: $verifyPass | 验证时长: ${(validAudio.size.toFloat()/SAMPLE_RATE*1000).toLong()}ms")
verifyPass
}
} catch (e: Exception) {
}.onFailure { e ->
// 处理所有异常情况
LogUtils.e(TAG, "❌ 声纹验证异常,拒绝", e)
return false
} finally {
stream?.release()
}
}.also {
// 确保 stream 资源释放
runCatching {
stream?.release()
}.onFailure { e ->
LogUtils.w(TAG, "⚠️ 释放 Stream 资源失败", e)
}
}.getOrDefault(false) // 异常时默认返回 false
}
}

View File

@ -26,7 +26,8 @@ class WakeupManager(assetManager: AssetManager, function: () -> Unit) {
val config = KeywordSpotterConfig(
featConfig = featConfig,
modelConfig = modelConfig,
keywordsFile = keywordsFile
keywordsFile = keywordsFile,
keywordsThreshold = 0.2f
)
kws = KeywordSpotter(assetManager, config)
@ -40,9 +41,9 @@ class WakeupManager(assetManager: AssetManager, function: () -> Unit) {
/** ⭐ 永远喂 KWS */
fun acceptAudio(samples: FloatArray) {
val s = stream ?: return
for (i in samples.indices) {
samples[i] *= 2.5f
}
// for (i in samples.indices) {
// samples[i] *= 2.5f
// }
s.acceptWaveform(samples, sampleRate)
while (kws.isReady(s)) {

View File

@ -159,27 +159,27 @@ class MainActivity : BaseViewModelActivity<ActivityMainBinding, MainViewModel>()
}
}
mViewModel?.uploadVoiceLiveData?.observe(this) {
when (it) {
is ApiResult.Error -> {
Toaster.showShort("上传失败")
voiceController?.onUploadFinished(true)
}
is ApiResult.Success<String> -> {
if (!TextUtils.isEmpty(it.data)) {
Toaster.showShort(it.data)
}
Toaster.showShort(it)
voiceController?.onUploadFinished(true)
startPlayTimeoutJob?.cancel()
startPlayTimeoutJob = lifecycleScope.launch {
delay(PLAY_WAIT_TIMEOUT_MS)
voiceController?.onPlayEndBackend()
}
}
}
}
// mViewModel?.uploadVoiceLiveData?.observe(this) {
// when (it) {
// is ApiResult.Error -> {
// Toaster.showShort("上传失败")
// voiceController?.onUploadFinished(true)
// }
//
// is ApiResult.Success<String> -> {
// if (!TextUtils.isEmpty(it.data)) {
// Toaster.showShort(it.data)
// }
// Toaster.showShort(it)
// voiceController?.onUploadFinished(true)
// startPlayTimeoutJob?.cancel()
// startPlayTimeoutJob = lifecycleScope.launch {
// delay(PLAY_WAIT_TIMEOUT_MS)
// voiceController?.onPlayEndBackend()
// }
// }
// }
// }
@ -226,12 +226,12 @@ class MainActivity : BaseViewModelActivity<ActivityMainBinding, MainViewModel>()
// 1
// )
// loadLocalJsonAndPlay()
// val file = File(
// getExternalFilesDir(Environment.DIRECTORY_DOWNLOADS)!!.getAbsolutePath(),
// "xxx.wav"
// )
// AudioDebugUtil.saveFloatPcmAsWav(audio, file)
// LogUtils.dTag("audioxx", "WAV saved: ${file.path}, samples=${audio.size}")
val file = File(
getExternalFilesDir(Environment.DIRECTORY_DOWNLOADS)!!.getAbsolutePath(),
"xxx.wav"
)
AudioDebugUtil.saveFloatPcmAsWav(audio, file)
LogUtils.dTag("audioxx", "WAV saved: ${file.path}, samples=${audio.size}")
// lifecycleScope.launch(Dispatchers.Main) {
//
// mVerticalAnimator?.show()
@ -280,9 +280,9 @@ class MainActivity : BaseViewModelActivity<ActivityMainBinding, MainViewModel>()
when (msg.msgContentType) {
MessageContentType.RECEIVE_VOICE_STREAM.msgContentType -> {
lifecycleScope.launch(Dispatchers.IO) {
// UnityPlayerHolder.getInstance().startTalking(msg.content)
val audioDTO = GsonUtils.fromJson(msg.content, AudioDTO::class.java)
// voicePlayer.onAudioDTO(audioDTO)
//// UnityPlayerHolder.getInstance().startTalking(msg.content)
// val audioDTO = GsonUtils.fromJson(msg.content, LmChatDTO::class.java)
// voicePlayer.handleSlice(audioDTO)
}
}
}
@ -586,9 +586,9 @@ class MainActivity : BaseViewModelActivity<ActivityMainBinding, MainViewModel>()
super.onEvent(eventSource, id, type, data)
LogUtils.eTag("lrsxxx", "onEvent:${data}")
runCatching {
// val audioDTO = GsonUtils.fromJson(data, LmChatDTO::class.java)
// voicePlayer.handleSlice(audioDTO)
UnityPlayerHolder.getInstance().startTalking(data)
val audioDTO = GsonUtils.fromJson(data, LmChatDTO::class.java)
voicePlayer.handleSlice(audioDTO)
// UnityPlayerHolder.getInstance().startTalking(data)
}.onFailure {
LogUtils.eTag("lrsxxx", "解析音频数据失败", it)
voiceController?.onUploadFinished(false)

View File

@ -4,92 +4,134 @@ import android.media.AudioAttributes
import android.media.AudioFormat
import android.media.AudioManager
import android.media.AudioTrack
import kotlinx.coroutines.CoroutineScope
import kotlinx.coroutines.Dispatchers
import kotlinx.coroutines.SupervisorJob
import kotlinx.coroutines.cancel
import kotlinx.coroutines.delay
import kotlinx.coroutines.isActive
import kotlinx.coroutines.launch
import kotlinx.coroutines.*
import java.util.ArrayDeque
import java.util.Queue
import java.util.concurrent.locks.ReentrantLock
import kotlin.concurrent.withLock
// ====================== PCM 播放器 ======================
class PcmStreamPlayer(
private val sampleRate: Int
) {
var onPlayEnd: (() -> Unit)? = null
private val scope = CoroutineScope(SupervisorJob() + Dispatchers.IO)
private val bufferQueue: Queue<ByteArray> = ArrayDeque()
private val queueLock = ReentrantLock()
private val lock = ReentrantLock()
private var audioTrack: AudioTrack? = null
@Volatile
private var playing = true
// 新增:标记是否已释放,防止空指针
@Volatile
private var isReleased = false
init {
scope.launch {
val minBufferSize = AudioTrack.getMinBufferSize(
sampleRate,
AudioFormat.CHANNEL_OUT_MONO,
AudioFormat.ENCODING_PCM_16BIT
)
audioTrack = AudioTrack(
AudioAttributes.Builder()
.setUsage(AudioAttributes.USAGE_MEDIA)
.setContentType(AudioAttributes.CONTENT_TYPE_SPEECH)
.build(),
AudioFormat.Builder()
.setEncoding(AudioFormat.ENCODING_PCM_16BIT)
.setSampleRate(sampleRate)
.setEncoding(AudioFormat.ENCODING_PCM_16BIT)
.setChannelMask(AudioFormat.CHANNEL_OUT_MONO)
.build(),
AudioTrack.getMinBufferSize(
sampleRate,
AudioFormat.CHANNEL_OUT_MONO,
AudioFormat.ENCODING_PCM_16BIT
),
minBufferSize * 2,
AudioTrack.MODE_STREAM,
AudioManager.AUDIO_SESSION_ID_GENERATE
)
audioTrack?.play()
// 空安全检查防止AudioTrack创建失败
audioTrack?.play() ?: run {
playing = false
isReleased = true
return@launch
}
val silent = ByteArray(2048)
// 🔥 AudioTrack 预热(非常关键)
warmUp()
while (isActive && playing) {
val pcm = queueLock.run { bufferQueue.poll() }
val silent = ByteArray(1024)
if (pcm != null) {
while (isActive && playing && !isReleased) {
val pcm = lock.withLock {
if (bufferQueue.isEmpty()) null else bufferQueue.poll()
}
if (pcm != null && !isReleased) {
audioTrack?.write(pcm, 0, pcm.size)
} else {
} else if (!isReleased) {
audioTrack?.write(silent, 0, silent.size)
delay(5)
}
}
audioTrack?.stop()
audioTrack?.release()
// 释放前的空安全检查
audioTrack?.takeIf { !isReleased }?.stop()
audioTrack?.takeIf { !isReleased }?.release()
audioTrack = null
onPlayEnd?.invoke()
}
}
private fun warmUp() {
if (isReleased) return
val warmUpMs = 50
val bytes = sampleRate * 2 * warmUpMs / 1000
val silence = ByteArray(bytes)
audioTrack?.write(silence, 0, silence.size)
audioTrack?.write(silence, 0, silence.size)
}
fun pushPcm(pcm: ByteArray) {
queueLock.run { bufferQueue.add(pcm) }
if (isReleased) return
lock.withLock {
bufferQueue.add(pcm)
}
}
fun clearQueue() {
queueLock.run { bufferQueue.clear() }
if (isReleased) return
lock.withLock {
bufferQueue.clear()
}
}
fun queueEmpty(): Boolean = queueLock.run { bufferQueue.isEmpty() }
fun queueEmpty(): Boolean {
if (isReleased) return true
return lock.withLock { bufferQueue.isEmpty() }
}
// 核心新增:强制停止当前播放,清空所有缓冲区
fun forceStop() {
if (isReleased) return
lock.withLock {
bufferQueue.clear()
}
// 清空AudioTrack内部缓冲区立即停止发声
audioTrack?.flush()
audioTrack?.pause() // 暂停硬件播放,避免残留静音数据
}
// 核心新增:重启播放器(用于停止后播放新音频)
fun restart() {
if (isReleased) return
audioTrack?.play()
}
fun release() {
isReleased = true
playing = false
queueLock.run { bufferQueue.clear() }
clearQueue()
scope.cancel()
audioTrack?.stop()
audioTrack?.release()
audioTrack = null
}
}

View File

@ -73,6 +73,7 @@ immersionbar-components = { module = "com.geyifeng.immersionbar:immersionbar-com
immersionbar-ktx = { module = "com.geyifeng.immersionbar:immersionbar-ktx", version.ref = "immersionbarKtx" }
immersionbar = { module = "com.geyifeng.immersionbar:immersionbar", version.ref = "immersionbar" }
androidx-lifecycle-runtime-android = { group = "androidx.lifecycle", name = "lifecycle-runtime-android", version.ref = "lifecycleRuntimeAndroid" }
[plugins]
android-application = { id = "com.android.application", version.ref = "agp" }
kotlin-android = { id = "org.jetbrains.kotlin.android", version.ref = "kotlin" }